skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Riddle, Nicole C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sex-biased longevity is observed across a wide range of animal taxa, including bats, for reasons not well understood. Patterns of cytosine methylation vary predictably with age in many organisms, offering a valuable means to investigate differences in patterns of aging at the molecular level. We tested sex differences in cytosine methylation across 14 bat species and compared patterns of age-associated variation. Sex differences were overrepresented on the X chromosome, showing a strong pattern of female hypermethylation within promoter regions. Sex and age-associated differences in methylation were non-randomly distributed with respect to proximity to putative sex hormone receptor binding sites, with sites hypermethylated in males and females tending to be underrepresented near androgen and estrogen receptor binding sites, respectively. Across species, we observed the relative steepness of male versus female slopes of age-associated variation was associated with the strength of precopulatory sexual selection, with especially strong trends towards male-biased age-associated slopes in two harem-polygynous species that exhibit female-biased longevity. Our results offer insights into how patterns of methylation differ across sexes and ages, and raise intriguing questions for future research, such as whether sex differences in molecular aging reflect sex-biased longevity, for which records in bats are sparse. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. Abstract Comparative studies of aging are a promising approach to identifying general properties of and processes leading to aging. While to date, many comparative studies of aging in animals have focused on relatively narrow species groups, methodological innovations now allow for studies that include evolutionary distant species. However, comparative studies of aging across a wide range of species that have distinct life histories introduce additional challenges in experimental design. Here, we discuss these challenges, highlight the most pressing problems that need to be solved, and provide suggestions based on current approaches to successfully carry out comparative aging studies across the animal kingdom. 
    more » « less
  4. Kaplan, C D (Ed.)
    Abstract Drosophila Heterochromatin Protein 1a (HP1a) is essential for heterochromatin formation and is involved in transcriptional silencing. However, certain loci require HP1a to be transcribed. One model posits that HP1a acts as a transcriptional silencer within euchromatin while acting as an activator within heterochromatin. However, HP1a has been observed as an activator of a set of euchromatic genes. Therefore, it is not clear whether, or how, chromatin context informs the function of HP1 proteins. To understand the role of HP1 proteins in transcription, we examined the genome-wide binding profile of HP1a as well as two other Drosophila HP1 family members, HP1B and HP1C, to determine whether coordinated binding of these proteins is associated with specific transcriptional outcomes. We found that HP1 proteins share many of their endogenous binding targets. These genes are marked by active histone modifications and are expressed at higher levels than nontarget genes in both heterochromatin and euchromatin. In addition, HP1 binding targets displayed increased RNA polymerase pausing compared with nontarget genes. Specifically, colocalization of HP1B and HP1C was associated with the highest levels of polymerase pausing and gene expression. Analysis of HP1 null mutants suggests these proteins coordinate activity at transcription start sites to regulate transcription. Depletion of HP1B or HP1C alters expression of protein-coding genes bound by HP1 family members. Our data broaden understanding of the mechanism of transcriptional activation by HP1a and highlight the need to consider particular protein–protein interactions, rather than broader chromatin context, to predict impacts of HP1 at transcription start sites. 
    more » « less
  5. Synopsis Evidence from across the tree of life suggests that epigenetic inheritance is more common than previously thought. If epigenetic inheritance is indeed as common as the data suggest, this finding has potentially important implications for evolutionary theory and our understanding of how evolution and adaptation progress. However, we currently lack an understanding of how common various epigenetic inheritance types are, and how they impact phenotypes. In this perspective, we review the open questions that need to be addressed to fully integrate epigenetic inheritance into evolutionary theory and to develop reliable predictive models for phenotypic evolution. We posit that addressing these challenges will require the collaboration of biologists from different disciplines and a focus on the exploration of data and phenomena without preconceived limits on potential mechanisms or outcomes. 
    more » « less
  6. Abstract The F element of the Drosophila karyotype (the fourth chromosome in Drosophila melanogaster) is often referred to as the “dot chromosome” because of its appearance in a metaphase chromosome spread. This chromosome is distinct from other Drosophila autosomes in possessing both a high level of repetitious sequences (in particular, remnants of transposable elements) and a gene density similar to that found in the other chromosome arms, ∼80 genes distributed throughout its 1.3-Mb “long arm.” The dot chromosome is notorious for its lack of recombination and is often neglected as a consequence. This and other features suggest that the F element is packaged as heterochromatin throughout. F element genes have distinct characteristics (e.g., low codon bias, and larger size due both to larger introns and an increased number of exons), but exhibit expression levels comparable to genes found in euchromatin. Mapping experiments show the presence of appropriate chromatin modifications for the formation of DNaseI hypersensitive sites and transcript initiation at the 5′ ends of active genes, but, in most cases, high levels of heterochromatin proteins are observed over the body of these genes. These various features raise many interesting questions about the relationships of chromatin structures with gene and chromosome function. The apparent evolution of the F element as an autosome from an ancestral sex chromosome also raises intriguing questions. The findings argue that the F element is a unique chromosome that occupies its own space in the nucleus. Further study of the F element should provide new insights into chromosome structure and function. 
    more » « less
  7. Imhof, Axel (Ed.)